info prev up next book cdrom email home

Lagrange's Identity

The vector identity

\begin{displaymath}
({\bf A}\times {\bf B})\cdot ({\bf C}\times {\bf D})
= ({\b...
...B}\cdot {\bf D})-({\bf A}\cdot {\bf D})({\bf B}\cdot {\bf C}).
\end{displaymath} (1)

This identity can be generalized to $n$-D,


\begin{displaymath}
({\bf a}_1\times\cdots\times {\bf a}_{n-1})\cdot({\bf b}_1\t...
..._1 & \cdots & {\bf a}_{n-1}\cdot{\bf b}_{n-1}\cr}}\right\vert,
\end{displaymath} (2)

where $\vert{\hbox{\sf A}}\vert$ is the Determinant of A, or


\begin{displaymath}
\left({\,\sum_{k=1}^n a_kb_k}\right)^2=\left({\,\sum_{k=1}^n...
...{b_k}^2}\right)- \sum_{1\leq k\leq j\leq n} (a_kb_j-a_jb_k)^2.
\end{displaymath} (3)

See also Vector Triple Product, Vector Quadruple Product


References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic Press, p. 1093, 1979.




© 1996-9 Eric W. Weisstein
1999-05-26