info prev up next book cdrom email home

Vector Quadruple Product


\begin{displaymath}
({\bf A}\times {\bf B})\cdot ({\bf C}\times {\bf D}) = ({\bf...
... B}\cdot {\bf D})-({\bf A}\cdot {\bf D})({\bf B}\cdot {\bf C})
\end{displaymath} (1)


$\displaystyle ({\bf A}\times {\bf B})^2$ $\textstyle \equiv$ $\displaystyle ({\bf A}\times {\bf B})\cdot({\bf A}\times {\bf B})$  
  $\textstyle =$ $\displaystyle ({\bf A}\cdot {\bf A})({\bf B}\cdot {\bf B})-({\bf A}\cdot {\bf B})({\bf B}\cdot {\bf A})$  
  $\textstyle =$ $\displaystyle {\bf A}^2{\bf B}^2-({\bf A}\cdot {\bf B})^2$ (2)


\begin{displaymath}
{\bf A}\times ({\bf B}\times ({\bf C}\times {\bf D})) = {\bf...
...\times {\bf D}))-({\bf A}\cdot {\bf B})({\bf C}\times {\bf D})
\end{displaymath} (3)


$\displaystyle ({\bf A}\times {\bf B})\times ({\bf C}\times {\bf D})$ $\textstyle =$ $\displaystyle [{\bf A},{\bf B},{\bf D}]{\bf C}-[{\bf A},{\bf B},{\bf C}]{\bf D}$  
  $\textstyle =$ $\displaystyle ({\bf C}\times {\bf D})\times ({\bf B}\times {\bf A}) = [{\bf C},{\bf D},{\bf A}]{\bf D}-[{\bf C},{\bf D},{\bf B}]{\bf A},$ (4)

where $[{\bf A},{\bf B},{\bf D}]$ denotes the Vector Triple Product. Equation (24) is known as Lagrange's Identity.

See also Lagrange's Identity, Vector Triple Product




© 1996-9 Eric W. Weisstein
1999-05-26