info prev up next book cdrom email home

Lal's Constant

Let $P(N)$ denote the number of Primes of the form $n^2+1$ for $1\leq n\leq N$, then

\begin{displaymath}
P(N)\sim 0.68641\mathop{\rm li}\nolimits (N),
\end{displaymath} (1)

where $\mathop{\rm li}\nolimits (N)$ is the Logarithmic Integral (Shanks 1960, pp. 321-332). Let $Q(N)$ denote the number of Primes of the form $n^4+1$ for $1\leq n\leq N$, then
\begin{displaymath}
Q(N)\sim {\textstyle{1\over 4}}s_1\mathop{\rm li}\nolimits (N)=0.66974\mathop{\rm li}\nolimits (N)
\end{displaymath} (2)

(Shanks 1961, 1962). Let $R(N)$ denote the number of pairs of Primes $(n-1)^2+1$ and $(n+1)^2+1$ for $n\leq N-1$, then
\begin{displaymath}
R(N)\sim 0.48762\mathop{\rm li}\nolimits _2(N),
\end{displaymath} (3)

where
\begin{displaymath}
\mathop{\rm li}\nolimits _2(N)\equiv \int_2^N {dn\over(\ln n)^2}
\end{displaymath} (4)

(Shanks 1960, pp. 201-203). Finally, let $S(N)$ denote the number of pairs of Primes $(n-1)^4+1$ and $(n+1)^4+1$ for $n\leq N-1$, then
\begin{displaymath}
S(N)\sim \lambda\mathop{\rm li}\nolimits _2(N)
\end{displaymath} (5)

(Lal 1967), where $\lambda$ is called Lal's constant. Shanks (1967) showed that $\lambda\approx 0.79220$.


References

Lal, M. ``Primes of the Form $n^4+1$.'' Math. Comput. 21, 245-247, 1967.

Shanks, D. ``On the Conjecture of Hardy and Littlewood Concerning the Number of Primes of the Form $n^2+a$.'' Math. Comput. 14, 321-332, 1960.

Shanks, D. ``On Numbers of the Form $n^4+1$.'' Math. Comput. 15, 186-189, 1961.

Shanks, D. Corrigendum to ``On the Conjecture of Hardy and Littlewood Concerning the Number of Primes of the Form $n^2+a$.'' Math. Comput. 16, 513, 1962.

Shanks, D. ``Lal's Constant and Generalization.'' Math. Comput. 21, 705-707, 1967.




© 1996-9 Eric W. Weisstein
1999-05-26