info prev up next book cdrom email home

Lambert Azimuthal Equal-Area Projection

\begin{figure}\begin{center}\BoxedEPSF{maps/laaz.epsf scaled 700}\end{center}\end{figure}


$\displaystyle x$ $\textstyle =$ $\displaystyle k'\cos\phi\sin(\lambda-\lambda_0)$ (1)
$\displaystyle y$ $\textstyle =$ $\displaystyle k'[\cos\phi_1\sin\phi-\sin\phi_1\cos\phi\cos(\lambda-\lambda_0)],$ (2)

where
\begin{displaymath}
k'=\sqrt{2\over 1+\sin\phi_1\sin\phi+\cos\phi_1\cos\phi\cos(\lambda-\lambda_0)}.
\end{displaymath} (3)

The inverse Formulas are
$\displaystyle \phi$ $\textstyle =$ $\displaystyle \sin^{-1}\left({\cos c\sin\phi_1+{y\sin c\cos\phi_1\over\rho}}\right)$ (4)
$\displaystyle \lambda$ $\textstyle =$ $\displaystyle \lambda_0+\tan^{-1}\left({x\sin c\over \rho\cos\phi_1\cos c-y\sin\phi_1\sin c}\right),$ (5)

where
$\displaystyle \rho$ $\textstyle =$ $\displaystyle \sqrt{x^2+y^2}$ (6)
$\displaystyle c$ $\textstyle =$ $\displaystyle 2\sin^{-1}({\textstyle{1\over 2}}\rho).$ (7)


References

Snyder, J. P. Map Projections--A Working Manual. U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, pp. 182-190, 1987.




© 1996-9 Eric W. Weisstein
1999-05-26