info prev up next book cdrom email home

Landen's Formula


\begin{displaymath}
{\vartheta _3(z,t)\vartheta _4(z,t)\over \vartheta _4(2z,2t)...
...{\vartheta _2(z,t)\vartheta _1(z,t)\over \vartheta _1(2z,2t)},
\end{displaymath}

where $\vartheta _i$ are Theta Functions. This transformation was used by Gauß to show that Elliptic Integrals could be computed using the Arithmetic-Geometric Mean.




© 1996-9 Eric W. Weisstein
1999-05-26