info prev up next book cdrom email home

Laplace's Equation--Bispherical Coordinates

In Bispherical Coordinates, Laplace's Equation becomes


\begin{displaymath}
\nabla^2f={\sin u\over(\cosh v-\cos u)^3}\left[{{\partial\ov...
...r\cosh v-\cos u}{\partial f\over\partial\phi}}\right)}\right].
\end{displaymath} (1)

Let

\begin{displaymath}
F(u,v,\phi)=\sqrt{\cosh v-\cos u}\,U(u)V(v)\Phi(\phi),
\end{displaymath}

then Laplace's Equation is partially separable, although the Helmholtz Differential Equation is not.


References

Arfken, G. ``Bispherical Coordinates $(\xi, \eta, \phi)$.'' §2.14 in Mathematical Methods for Physicists, 2nd ed. Orlando, FL: Academic Press, pp. 115-117, 1970.

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 665-666, 1953.




© 1996-9 Eric W. Weisstein
1999-05-26