info prev up next book cdrom email home

Bispherical Coordinates

\begin{figure}\begin{center}\BoxedEPSF{BisphericalCoordinates.epsf scaled 700}\end{center}\end{figure}

A system of Curvilinear Coordinates defined by

$\displaystyle x$ $\textstyle =$ $\displaystyle {a\sin\xi\cos\phi\over\cosh\eta-\cos\xi}$ (1)
$\displaystyle y$ $\textstyle =$ $\displaystyle {a\sin\xi\sin\phi\over\cosh\eta-\cos\xi}$ (2)
$\displaystyle z$ $\textstyle =$ $\displaystyle {a\sinh\eta\over\cosh\eta-\cos\xi}.$ (3)

The Scale Factors are
$\displaystyle h_\xi$ $\textstyle =$ $\displaystyle {a\over \cos\eta-\cos\xi}$ (4)
$\displaystyle h_\eta$ $\textstyle =$ $\displaystyle {a\over \cosh\eta-\cos\xi}$ (5)
$\displaystyle h_\phi$ $\textstyle =$ $\displaystyle {a\sin\xi\over \cosh\eta-\cos\xi}.$ (6)

The Laplacian is

$\nabla^2= \left({-\cos u\cot^2 u+3\cosh v\cot^2 u-3\cosh^2 v\cot u\csc u+\cosh^3 v\csc^2 u\over \cosh v-\cos u}\right){\partial\over\partial\phi^2}$
$\quad +(\cos u-\cosh v)\sinh v{\partial\over\partial v}+(\cosh^2 v-\cos u)^2{\partial^2\over\partial v^2}$
$\quad +(\cosh v-\cos u)(\cosh v\cot u-\sin u-\cos u\cot u){\partial\over\partial u}$
$\quad +(\cosh^2 v-\cos u)^2{\partial^2\over\partial u^2}.$ (7)

In bispherical coordinates, Laplace's Equation is separable, but the Helmholtz Differential Equation is not.

See also Laplace's Equation--Bispherical Coordinates, Toroidal Coordinates


References

Arfken, G. ``Bispherical Coordinates ($\xi$, $\eta$, $\phi$).'' §2.14 in Mathematical Methods for Physicists, 2nd ed. Orlando, FL: Academic Press, pp. 115-117, 1970.

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 665-666, 1953.




© 1996-9 Eric W. Weisstein
1999-05-26