info prev up next book cdrom email home

Laplace-Mehler Integral


$\displaystyle P_n(\cos\theta)$ $\textstyle =$ $\displaystyle {1\over\pi}\int_0^{2\pi} (\cos\theta+i\sin\theta\cos\phi)^n\,d\phi$  
  $\textstyle =$ $\displaystyle {\sqrt{2}\over\pi}\int_0^\theta {\cos[(n+{\textstyle{1\over 2}})\phi]\over\sqrt{\cos\phi-\cos\theta}}\,d\phi$  
  $\textstyle =$ $\displaystyle {\sqrt{2}\over\pi}\int_\theta^\pi {\sin[(n+{\textstyle{1\over 2}})\phi]\over\sqrt{\cos\theta-\cos\phi}}\,d\phi.$  


References

Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1463, 1980.




© 1996-9 Eric W. Weisstein
1999-05-26