info prev up next book cdrom email home

Least Common Multiple

The least common multiple of two numbers $n_1$ and $n_2$ is denoted $\mathop{\rm LCM}\nolimits (n_1, n_2)$ or $[n_1,n_2]$ and can be obtained by finding the Prime factorization of each

\begin{displaymath}
n_1={p_1}^{a_1}\cdots{p_n}^{a_n}
\end{displaymath} (1)


\begin{displaymath}
n_2={p_1}^{b_1}\cdots{p_n}^{b_n},
\end{displaymath} (2)

where the $p_i$s are all Prime Factors of $n_1$ and $n_2$, and if $p_i$ does not occur in one factorization, then the corresponding exponent is 0. The least common multiple is then
\begin{displaymath}
\mathop{\rm LCM}\nolimits (n_1,n_2) = [n_1,n_2] = \prod_{i=1}^n {p_i}^{\max(a_i,b_i)}.
\end{displaymath} (3)

Let $m$ be a common multiple of $a$ and $b$ so that
\begin{displaymath}
m=ha=kb.
\end{displaymath} (4)

Write $a=a_1(a,b)$ and $b=b_1(a,b)$, where $a_1$ and $b_1$ are Relatively Prime by definition of the Greatest Common Divisor $(a_1,b_1)=1$. Then $ha_1=kb_1$, and from the Division Lemma (given that $ha_1$ is Divisible by $b$ and $(b_1,a_1)=0$), we have $h$ is Divisible by $b_1$, so
\begin{displaymath}
h=nb_1
\end{displaymath} (5)


\begin{displaymath}
m=ha=nb_1a = n{ab\over(a,b)}.
\end{displaymath} (6)

The smallest $m$ is given by $n=1$,
\begin{displaymath}
\mathop{\rm LCM}\nolimits (a,b) = {ab\over \mathop{\rm GCD}\nolimits (a,b)},
\end{displaymath} (7)

so
\begin{displaymath}
\mathop{\rm GCD}\nolimits (a,b)\,\mathop{\rm LCM}\nolimits (a,b)=ab
\end{displaymath} (8)


\begin{displaymath}
(a,b)[a,b]=ab.
\end{displaymath} (9)

The LCM is Idempotent
\begin{displaymath}[a,a]=a,
\end{displaymath} (10)

Commutative
\begin{displaymath}[a,b]=[b,a],
\end{displaymath} (11)

Associative
\begin{displaymath}[a,b,c]=[[a,b],c]=[a,[b,c]],
\end{displaymath} (12)

Distributive
\begin{displaymath}[ma,mb,mc]=m[a,b,c],
\end{displaymath} (13)

and satisfies the Absorption Law
\begin{displaymath}
(a,[a,b])=a.
\end{displaymath} (14)

It is also true that
\begin{displaymath}[ma,mb]={(ma)(mb)\over (ma,mb)} =m{ab\over (a,b)} = m[a,b].
\end{displaymath} (15)

See also Greatest Common Divisor, Mangoldt Function, Relatively Prime


References

Guy, R. K. ``Density of a Sequence with L.C.M. of Each Pair Less than $x$.'' §E2 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 200-201, 1994.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26