info prev up next book cdrom email home

Lommel's Integrals


\begin{displaymath}
(\beta^2-\alpha^2) \int xJ_n(\alpha x)J_n(\beta x)\,dx = x[\...
...a J_n'(\alpha x)J_n(\beta x)-\beta J_n'(\beta x)J_n(\alpha x)]
\end{displaymath}


\begin{displaymath}
\int x{J_n}^2(\alpha x)\,dx = {\textstyle{1\over 2}}x^2[{J_n}^2(\alpha x)+J_{n-1}(\alpha x) J_{n+1}(\alpha x)],
\end{displaymath}

where $J_n(x)$ is a Bessel Function of the First Kind.


References

Bowman, F. Introduction to Bessel Functions. New York: Dover, p. 101, 1958.




© 1996-9 Eric W. Weisstein
1999-05-25