A number such that the Prime-Generating Polynomial
As established by Stark (1967), there are only nine numbers such that (the Heegner Numbers , , , , , , , and ), and of these, only 7, 11, 19, 43, 67, and 163 are of the required form. Therefore, the only Lucky numbers of Euler are 2, 3, 5, 11, 17, and 41 (Le Lionnais 1983, Sloane's A014556), and there does not exist a better Prime-Generating Polynomial of Euler's form.
See also Class Number, Heegner Number, Prime-Generating Polynomial
References
Conway, J. H. and Guy, R. K. ``The Nine Magic Discriminants.'' In The Book of Numbers. New York: Springer-Verlag,
pp. 224-226, 1996.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 88 and 144, 1983.
Rabinowitz, G. ``Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern.''
Proc. Fifth Internat. Congress Math. (Cambridge) 1, 418-421, 1913.
Sloane, N. J. A. Sequence
A014556
in ``The On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html.
Stark, H. M. ``A Complete Determination of the Complex Quadratic Fields of Class Number One.'' Michigan Math. J. 14, 1-27, 1967.