info prev up next book cdrom email home

Minkowski Sausage

\begin{figure}\begin{center}\BoxedEPSF{Minkowski_Sausage.epsf scaled 680}\end{center}\end{figure}

A Fractal created from the base curve and motif illustrated below.

\begin{figure}\begin{center}\BoxedEPSF{MinkowskiMotif.epsf scaled 700}\end{center}\end{figure}

The number of segments after the $n$th iteration is

\begin{displaymath}
N_n=8^n,
\end{displaymath}

and

\begin{displaymath}
\epsilon_n=\left({1\over 4}\right)^n,
\end{displaymath}

so the Capacity Dimension is

\begin{displaymath}
D\equiv-\lim_{n\to\infty} {\ln N_n\over \ln\epsilon_n} = -\l...
...^n}
= {\ln 8\over \ln 4} = {3\ln 2\over 2\ln 2} = {3\over 2}.
\end{displaymath}


References

Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University Press, pp. 37-38 and 42, 1991.

Peitgen, H.-O. and Saupe, D. (Eds.). The Science of Fractal Images. New York: Springer-Verlag, p. 283, 1988.

mathematica.gif Weisstein, E. W. ``Fractals.'' Mathematica notebook Fractal.m.




© 1996-9 Eric W. Weisstein
1999-05-26