info prev up next book cdrom email home

Möbius Group

The equation

\begin{displaymath}
{x_1}^2+{x_2}^2+\ldots+{x_n}^2-2x_0x_\infty=0
\end{displaymath}

represents an $n$-D Hypersphere $\Bbb{S}^n$ as a quadratic hypersurface in an $(n+1)$-D real projective space $\Bbb{P}^{n+1}$, where $x_a$ are homogeneous coordinates in $\Bbb{P}^{n+1}$. Then the Group $M(n)$ of projective transformations which leave $\Bbb{S}^n$ invariant is called the Möbius group.


References

Iyanaga, S. and Kawada, Y. (Eds.). ``Möbius Geometry.'' §78A in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 265-266, 1980.




© 1996-9 Eric W. Weisstein
1999-05-26