An extremely fast factorization method developed by Pollard which was used to factor the RSA-130 Number. This method is the most powerful known for factoring general numbers, and has complexity
References
Coppersmith, D. ``Modifications to the Number Field Sieve.'' J. Cryptology 6, 169-180, 1993.
Coppersmith, D.; Odlyzko, A. M.; and Schroeppel, R. ``Discrete Logarithms in GF().'' Algorithmics 1, 1-15, 1986.
Cowie, J.; Dodson, B.; Elkenbracht-Huizing, R. M.; Lenstra, A. K.; Montgomery, P. L.; Zayer, J. A.
``World Wide Number Field Sieve Factoring Record: On to Bits.'' In Advances in Cryptology--ASIACRYPT '96 (Kyongju)
(Ed. K. Kim and T. Matsumoto.) New York: Springer-Verlag, pp. 382-394, 1996.
Elkenbracht-Huizing, M. ``A Multiple Polynomial General Number Field Sieve.'' Algorithmic Number Theory (Talence, 1996).
New York: Springer-Verlag, pp. 99-114, 1996.
Elkenbracht-Huizing, M. ``An Implementation of the Number Field Sieve.'' Experiment. Math. 5, 231-253, 1996.
Elkenbracht-Huizing, R.-M. ``Historical Background of the Number Field Sieve Factoring Method.'' Nieuw Arch. Wisk. 14,
375-389, 1996.
Lenstra, A. K. and Lenstra, H. W. Jr. ``Algorithms in Number Theory.'' In
Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (Ed. J. van Leeuwen).
New York: Elsevier, pp. 673-715, 1990.
Pomerance, C. ``A Tale of Two Sieves.'' Not. Amer. Math. Soc. 43, 1473-1485, 1996.