info prev up next book cdrom email home

Polyconic Projection

\begin{figure}\begin{center}\BoxedEPSF{maps/poco.epsf scaled 500}\end{center}\end{figure}


$\displaystyle x$ $\textstyle =$ $\displaystyle \cot\phi\sin E$ (1)
$\displaystyle y$ $\textstyle =$ $\displaystyle (\phi-\phi_0)+\cot\phi(1-\cos E),$ (2)

where
\begin{displaymath}
E=(\lambda-\lambda_0)\sin\phi.
\end{displaymath} (3)

The inverse Formulas are
\begin{displaymath}
\lambda={\sin^{-1}(x\tan\phi)\over\sin\phi}+\lambda_0,
\end{displaymath} (4)

and $\phi$ is determined from
\begin{displaymath}
\Delta\phi=-{A(\phi\tan\phi+1)-\phi-{\textstyle{1\over 2}}(\phi^2+B)\tan\phi\over {\phi-A\over\tan\phi}-1},
\end{displaymath} (5)

where $\phi_0=A$ and
$\displaystyle A$ $\textstyle =$ $\displaystyle \phi_0+y$ (6)
$\displaystyle B$ $\textstyle =$ $\displaystyle x^2+A^2.$ (7)


References

Snyder, J. P. Map Projections--A Working Manual. U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, pp. 124-137, 1987.




© 1996-9 Eric W. Weisstein
1999-05-25