The function
(1) |
(2) |
The polylogarithm satisfies the fundamental identities
(3) |
(4) |
(5) |
(6) |
The polylogarithm identities lead to remarkable expressions. Ramanujan gave the polylogarithm identities
(7) |
(8) |
(9) |
(10) |
(11) |
(12) |
(13) |
(14) |
(15) |
(16) |
(17) |
No general Algorithm is know for the integration of polylogarithms of functions.
See also Dilogarithm, Eulerian Number, Legendre's Chi-Function, Logarithmic Integral, Nielsen-Ramanujan Constants
References
Bailey, D.; Borwein, P.; and Plouffe, S. ``On the Rapid Computation of Various Polylogarithmic Constants.''
http://www.cecm.sfu.ca/~pborwein/PAPERS/P123.ps.
Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 323-326, 1994.
Lewin, L. Polylogarithms and Associated Functions. New York: North-Holland, 1981.
Lewin, L. (Ed.). Structural Properties of Polylogarithms. Providence, RI: Amer. Math. Soc., 1991.
Nielsen, N. Der Euler'sche Dilogarithms. Leipzig, Germany: Halle, 1909.
© 1996-9 Eric W. Weisstein