info prev up next book cdrom email home

Polynomial Bar Norm

For $p=\sum a_j z^j$, define

\begin{eqnarray*}
\vert\vert P\vert\vert _1 &=& \int_0^{2\pi} \vert P(e^{i\theta...
...vert\vert _\infty &=& {\rm max}_{\vert z\vert=1} \vert P(z)\vert
\end{eqnarray*}



\begin{eqnarray*}
\vert P\vert _1 &=&\sum_j \vert a_j\vert\\
\vert P\vert _2 &=...
..._j\vert^2}\\
\vert P\vert _\infty&=&{\rm max}_j \vert a_j\vert,
\end{eqnarray*}



where the $\vert\vert P\vert\vert _i$ norms are functions on the Unit Circle and the $\vert P\vert _i$ norms refer to the Coefficients $a_0$, ..., $a_n$.

See also Bombieri Norm, Norm, Unit Circle


References

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, p. 151, 1989.




© 1996-9 Eric W. Weisstein
1999-05-25