info prev up next book cdrom email home

Ramanujan's Identity


\begin{displaymath}
5 {\phi^5(x^5)\over\phi^6(x)} = \sum_{m=0}^\infty P(5m+4) x^m,
\end{displaymath}

where

\begin{displaymath}
\phi(x)=\prod_{m=1}^\infty (1-x^m)
\end{displaymath}

and $P(n)$ is the Partition Function P.

See also Ramanujan's Sum Identity




© 1996-9 Eric W. Weisstein
1999-05-25