info prev up next book cdrom email home

Ramanujan's Sum

The sum

\begin{displaymath}
c_q(m) = \sum_{h^*(q)} e^{2\pi i hm/q},
\end{displaymath} (1)

where $h$ runs through the residues Relatively Prime to $q$, which is important in the representation of numbers by the sums of squares. If $(q,q')=1$ (i.e., $q$ and $q$' are Relatively Prime), then
\begin{displaymath}
c_{qq'}(m)=c_q(m)c_{q'}(m).
\end{displaymath} (2)

For argument 1,
\begin{displaymath}
c_b(1)=\mu(b),
\end{displaymath} (3)

where $\mu$ is the Möbius Function, and for general $m$,
\begin{displaymath}
c_b(m) = \mu\left({b\over (b,m)}\right){\phi(b)\over \phi\left({b\over (b,m)}\right)}.
\end{displaymath} (4)

See also Möbius Function, Weyl's Criterion


References

Vardi, I. Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, p. 254, 1991.




© 1996-9 Eric W. Weisstein
1999-05-25