info prev up next book cdrom email home

Ramsey Number

The Ramsey number $R(m,n)$ gives the solution to the Party Problem, which asks the minimum number of guests $R(m,n)$ that must be invited so that at least $m$ will know each other (i.e., there exists a Clique of order $m$) or at least $n$ will not know each other (i.e., there exists an independent set of order $n$). By symmetry, it is true that

\begin{displaymath}
R(m,n)=R(n,m).
\end{displaymath} (1)

It also must be true that
\begin{displaymath}
R(2,m)=m.
\end{displaymath} (2)

A generalized Ramsey number is written
\begin{displaymath}
R(m_1, \ldots, m_k; n)
\end{displaymath} (3)

and is the smallest Integer $r$ such that, no matter how each $n$-element Subset of an $r$-element Set is colored with $k$ colors, there exists an $i$ such that there is a Subset of size $m_i$, all of whose $n$-element Subsets are color $i$. The usual Ramsey numbers are then equivalent to $R(m,n)=R(m, n; 2)$.


Bounds are given by

\begin{displaymath}
R(k,l)\leq \cases{
R(k-1,l)+R(k,l-1)-1\cr
\hfill {\rm for\ ...
...\rm\ even}\cr
R(k-1,l)+R(k,l-1)\cr
\hfill {\rm otherwise}\cr}
\end{displaymath} (4)

and
\begin{displaymath}
R(k,k)\leq 4R(k-2,k)+2
\end{displaymath} (5)

(Chung and Grinstead 1983). Erdös proved that for diagonal Ramsey numbers $R(k,k)$,
\begin{displaymath}
{k2^{k/2}\over e\sqrt{2}} < R(k,k).
\end{displaymath} (6)

This result was subsequently improved by a factor of 2 by Spencer (1975). $R(3,k)$ was known since 1980 to be bounded from above by $c_2k^2/\ln k$, and Griggs (1983) showed that $c_2=5/12$ was an acceptable limit. J.-H. Kim (Cipra 1995) subsequently bounded $R(3,k)$ by a similar expression from below, so
\begin{displaymath}
c_1 {k^2\over \ln k} \leq R(3,k) \leq c_2 {k^2\over\ln k}.
\end{displaymath} (7)

Burr (1983) gives Ramsey numbers for all 113 graphs with no more than 6 Edges and no isolated points.


A summary of known results up to 1983 for $R(m,n)$ is given in Chung and Grinstead (1983). Radziszowski maintains an up-to-date list of the best current bounds, reproduced in part in the following table for $R(m,n;2)$.

$m$ $n$ $R(m,n)$ Reference
3 3 6 Greenwood and Gleason 1955
3 4 9 Greenwood and Gleason 1955
3 5 14 Greenwood and Gleason 1955
3 6 18 Graver and Yackel 1968
3 7 23 Kalbfleisch 1966
3 8 28 McKay and Min 1992
3 9 36 Grinstead and Roberts 1982
3 10 [40, 43] Exoo 1989, Radziszowski and Kreher 1988
3 11 [46, 51] Radziszowski and Kreher 1988
3 12 [52, 60] Exoo 1993, Radziszowski and Kreher 1988, Exoo 1998
3 13 [60, 69] XZ, Radziszowski and Kreher 1988
3 14 [66, 78] Exoo (unpub.), Radziszowski and Kreher 1988
3 15 [73, 89] Wang and Wang 1989, Radziszowski (unpub.)
3 16 [79, $\infty$] Wang and Wang 1989
3 17 [92, $\infty$] WWY
3 18 [98, $\infty$] WWY
3 19 [106, $\infty$] WWY
3 20 [109, $\infty$] WWY
3 21 [122, $\infty$] WWY
3 22 [125, $\infty$] WWY
3 23 [136, $\infty$] WWY
4 4 18 Greenwood and Gleason 1955
4 5 25 Mckay and Radziszowski 1995
4 6 [35, 41] Ex8, MR4
4 7 [49, 62]  
4 8 [55, 85] Exoo 1998
4 9 [69, 116]  
4 10 [80, 151]  
4 11 [93, 191]  
4 12 [98, 238]  
4 13 [112, 291]  
4 14 [119, 349]  
4 15 [128, 417]  
5 5 [43, 49] Ex4, MR4
5 6 [58, 87] Exoo 1993, Walker 1971
5 7 [80, 143]  
5 8 [95, 216]  
5 9 [116, 371] Exoo 1998
5 10 [1, 445]  
6 6 [102, 165] Kalbfleisch 1965, Mac
6 7 [109, 300] Exoo 1998
6 8 [122, 497] Exoo 1998
6 9 [153, 784]  
6 10 [167, 1180]  
7 7 [205, 545] Hill and Irving 1982, Giraud 1973
7 8 [1, 1035]  
7 9 [1, 1724]  
7 10 [1, 2842]  
8 8 [282, 1874]  
8 9 [1, 3597]  
8 10 [1, 6116]  
9 9 [565, 6680]  
9 10 [1, 12795]  
10 10 [798, 23981] Guldan and Tomasta ?
11 11 [522, $\infty$] Guldan and Tomasta ?


Known values for generalized Ramsey numbers are given in the following table.

$R(\ldots; 2)$ Bounds Reference
$R(3, 3, 3; 2)$ 17 Greenwood and Gleason 1955
$R(3, 3, 4; 2)$ [30, 32]  
$R(3, 3, 5; 2)$ [45, 59]  
$R(3, 4, 5; 2)$ $\geq 80$ Exoo 1998
$R(3, 4, 4; 2)$ [55, 81]  
$R(4, 4, 4; 2)$ [128, 242] Hill and Irving 1982, Giraud 1973
$R(3, 3, 3, 3; 2)$ [51, 64] Chung 1973, Sanchez-Flores 1995
$R(3, 3, 3, 4; 2)$ [87, 159] Exoo 1998
$R(3, 3, 3, 3, 3; 2)$ [162, 317]  
$R(3, 3, 3, 3, 3, 3; 2)$ [1, 500]  


$R(\ldots; 3)$ Bounds
$R(4, 4; 3)$ [14, 15]

See also Clique, Complete Graph, Extremal Graph, Irredundant Ramsey Number, Schur Number


References

Burr, S. A. ``Generalized Ramsey Theory for Graphs--A Survey.'' In Graphs and Combinatorics (Ed. R. A. Bari and F. Harary). New York: Springer-Verlag, pp. 52-75, 1964.

Burr, S. A. ``Diagonal Ramsey Numbers for Small Graphs.'' J. Graph Th. 7, 57-69, 1983.

Chartrand, G. ``The Problem of the Eccentric Hosts: An Introduction to Ramsey Numbers.'' §5.1 in Introductory Graph Theory. New York: Dover, pp. 108-115, 1985.

Chung, F. R. K. ``On the Ramsey Numbers $N(3, 3, \ldots, 3;2)$.'' Discrete Math. 5, 317-321, 1973.

Chung, F. and Grinstead, C. G. ``A Survey of Bounds for Classical Ramsey Numbers.'' J. Graph. Th. 7, 25-37, 1983.

Cipra, B. ``A Visit to Asymptopia Yields Insights into Set Structures.'' Science 267, 964-965, 1995.

Exoo, G. ``On Two Classical Ramsey Numbers of the Form $R(3,n)$.'' SIAM J. Discrete Math. 2, 488-490, 1989.

Exoo, G. ``Announcement: On the Ramsey Numbers $R(4,6)$, $R(5,6)$ and $R(3,12)$.'' Ars Combin. 35, 85, 1993.

Exoo, G. ``Some New Ramsey Colorings.'' Electronic J. Combinatorics 5, No. 1, R29, 1-5, 1998. http://www.combinatorics.org/Volume_5/v5i1toc.html.

Folkmann, J. ``Notes on the Ramsey Number $N(3,3,3,3)$.'' J. Combinat. Theory. Ser. A 16, 371-379, 1974.

Gardner, M. ``Mathematical Games: In Which Joining Sets of Points by Lines Leads into Diverse (and Diverting) Paths.'' Sci. Amer. 237, 18-28, 1977.

Gardner, M. Penrose Tiles and Trapdoor Ciphers... and the Return of Dr. Matrix, reissue ed. New York: W. H. Freeman, pp. 240-241, 1989.

Giraud, G. ``Une minoration du nombre de quadrangles unicolores et son application a la majoration des nombres de Ramsey binaires bicolors.'' C. R. Acad. Sci. Paris A 276, 1173-1175, 1973.

Graham, R. L.; Rothschild, B. L.; and Spencer, J. H. Ramsey Theory, 2nd ed. New York: Wiley, 1990.

Graver, J. E. and Yackel, J. ``Some Graph Theoretic Results Associated with Ramsey's Theorem.'' J. Combin. Th. 4, 125-175, 1968.

Greenwood, R. E. and Gleason, A. M. ``Combinatorial Relations and Chromatic Graphs.'' Canad. J. Math. 7, 1-7, 1955.

Griggs, J. R. ``An Upper Bound on the Ramsey Numbers $R(3,k)$.'' J. Comb. Th. A 35, 145-153, 1983.

Grinstead, C. M. and Roberts, S. M. ``On the Ramsey Numbers $R(3,8)$ and $R(3,9)$.'' J. Combinat. Th. Ser. B 33, 27-51, 1982.

Guldan, F. and Tomasta, P. ``New Lower Bounds of Some Diagonal Ramsey Numbers.'' J. Graph. Th. 7, 149-151, 1983.

Hanson, D. ``Sum-Free Sets and Ramsey Numbers.'' Discrete Math. 14, 57-61, 1976.

Harary, F. ``Recent Results on Generalized Ramsey Theory for Graphs.'' Graph Theory and Applications (Ed. Y. Alai, D. R. Lick, and A. T. White). New York: Springer-Verlag, pp. 125-138, 1972.

Hill, R. and Irving, R. W. ``On Group Partitions Associated with Lower Bounds for Symmetric Ramsey Numbers.'' European J. Combin. 3, 35-50, 1982.

Kalbfleisch, J. G. Chromatic Graphs and Ramsey's Theorem. Ph.D. thesis, University of Waterloo, January 1966.

McKay, B. D. and Min, Z. K. ``The Value of the Ramsey Number $R(3,8)$.'' J. Graph Th. 16, 99-105, 1992.

McKay, B. D. and Radziszowski, S. P. ``$R(4,5)=25$.'' J. Graph. Th 19, 309-322, 1995.

Piwakowski, K. ``Applying Tabu Search to Determine New Ramsey Numbers.'' Electronic J. Combinatorics 3, R6 1-4, 1996. http://www.combinatorics.org/Volume_3/volume3.html#R6.

Radziszowski, S. P. ``Small Ramsey Numbers.'' Electronic J. Combin. 1, DS1 1-29, Rev. Mar. 25, 1996. http://ejc.math.gatech.edu:8080/Journal/Surveys/ds1.ps.

Radziszowski, S. and Kreher, D. L. ``Upper Bounds for Some Ramsey Numbers $R(3,k)$.'' J. Combinat. Math. Combin. Comput. 4, 207-212, 1988.

Spencer, J. H. ``Ramsey's Theorem--A New Lower Bound.'' J. Combinat. Theory Ser. A 18, 108-115, 1975.

Wang, Q. and Wang, G. ``New Lower Bounds for the Ramsey Numbers $R(3,q)$.'' Beijing Daxue Xuebao 25, 117-121, 1989.

Whitehead, E. G. ``The Ramsey Number $N(3,3,3,3;2)$.'' Discrete Math. 4, 389-396, 1973.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25