info prev up next book cdrom email home

Rectangular Parallelepiped

\begin{figure}\begin{center}\BoxedEPSF{RectangularParallelepiped.epsf scaled 1000}\end{center}\end{figure}

A closed box composed of 3 pairs of rectangular faces placed opposite each other and joined at Right Angles to each other. This Parallelepiped therefore corresponds to a rectangular ``box.'' If the lengths of the sides are denoted $a$, $b$, and $c$, then the Volume is

\begin{displaymath}
V=abc,
\end{displaymath} (1)

the total Surface Area is
\begin{displaymath}
A=2(ab+bc+ca),
\end{displaymath} (2)

and the length of the ``space'' Diagonal is
\begin{displaymath}
d_{abc}=\sqrt{a^2+b^2+c^2}.
\end{displaymath} (3)

If $a=b=c$, then the rectangular parallelepiped is a Cube.

See also Cube, Euler Brick, Parallelepiped


References

Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 127, 1987.




© 1996-9 Eric W. Weisstein
1999-05-25