info prev up next book cdrom email home

Regularized Gamma Function

The regularized gamma functions are defined by

\begin{displaymath}
P(a,z)=1-Q(a,z)\equiv {\gamma(a,z)\over\Gamma(a)}
\end{displaymath}

and

\begin{displaymath}
Q(a,z)=1-P(a,z)\equiv {\Gamma(a,z)\over\Gamma(a)},
\end{displaymath}

where $\gamma(a,z)$ and $\Gamma(a,z)$ are incomplete Gamma Functions and $\Gamma(a)$ is a complete Gamma Function. Their derivatives are
$\displaystyle {d\over dz} P(a,z)$ $\textstyle =$ $\displaystyle e^{-z}z^{a-1}$  
$\displaystyle {d\over dz} Q(a,z)$ $\textstyle =$ $\displaystyle -e^{-z}z^{a-1}.$  

See also Gamma Function, Regularized Beta Function


References

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 160-161, 1992.




© 1996-9 Eric W. Weisstein
1999-05-25