info prev up next book cdrom email home

Saalschützian

For a Generalized Hypergeometric Function

\begin{displaymath}
{}_{p+1}F_p\left[{\matrix{\alpha_1, \alpha_2, \ldots, \alpha_{p+1}\cr \beta_1, \beta_2, \ldots, \beta_p\cr} ; z}\right],
\end{displaymath}

the Saalschützian $S$ is defined if

\begin{displaymath}
\sum\beta=\sum\alpha+1.
\end{displaymath}

See also Generalized Hypergeometric Function




© 1996-9 Eric W. Weisstein
1999-05-26