info prev up next book cdrom email home

Sigmoid Function

\begin{figure}\begin{center}\BoxedEPSF{SigmoidFunction.epsf scaled 700}\end{center}\end{figure}

\begin{figure}\begin{center}\BoxedEPSF{SigmoidFunctionReIm.epsf scaled 800}\end{center}\end{figure}

The function

\begin{displaymath}
y={1\over 1+e^{-x}}
\end{displaymath}

which is the solution to the Ordinary Differential Equation

\begin{displaymath}
{dy\over dx}=y(1-y).
\end{displaymath}

It has an inflection point at $x=0$, where

\begin{displaymath}
y''(x)=-{e^x(e^x-1)\over(e^x+1)^3}=0.
\end{displaymath}

See also Exponential Function, Exponential Ramp


References

von Seggern, D. CRC Standard Curves and Surfaces. Boca Raton, FL: CRC Press, p. 124, 1993.




© 1996-9 Eric W. Weisstein
1999-05-26