The first Smarandache constant is defined as
Cojocaru and Cojocaru (1996b) prove that the second Smarandache constant
Cojocaru and Cojocaru (1996c) prove that the series
Sandor (1997) shows that the series
See also Smarandache Function
References
Burton, E. ``On Some Series Involving the Smarandache Function.'' Smarandache Notions J. 6, 13-15, 1995.
Burton, E. ``On Some Convergent Series.'' Smarandache Notions J. 7, 7-9, 1996.
Cojocaru, I. and Cojocaru, S. ``The First Constant of Smarandache.'' Smarandache Notions J. 7, 116-118, 1996a.
Cojocaru, I. and Cojocaru, S. ``The Second Constant of Smarandache.'' Smarandache Notions J. 7, 119-120, 1996b.
Cojocaru, I. and Cojocaru, S. ``The Third and Fourth Constants of Smarandache.'' Smarandache Notions J. 7, 121-126, 1996c.
``Constants Involving the Smarandache Function.''
http://www.gallup.unm.edu/~smarandache/CONSTANT.TXT.
Dumitrescu, C. and Seleacu, V. ``Numerical Series Involving the Function .'' The Smarandache Function.
Vail: Erhus University Press, pp. 48-61, 1996.
Ibstedt, H. Surfing on the Ocean of Numbers--A Few Smarandache Notions and Similar Topics.
Lupton, AZ: Erhus University Press, pp. 27-30, 1997.
Sandor, J. `On The Irrationality Of Certain Alternative Smarandache Series.'' Smarandache Notions J. 8, 143-144, 1997.
Smarandache, F. Collected Papers, Vol. 1. Bucharest, Romania: Tempus, 1996.
Smarandache, F. Collected Papers, Vol. 2. Kishinev, Moldova: Kishinev University Press, 1997.
© 1996-9 Eric W. Weisstein