info prev up next book cdrom email home

Smarandache Paradox

Let $A$ be some attribute (e.g., possible, present, perfect, etc.). If all is $A$, then the non-$A$ must also be $A$. For example, ``All is possible, the impossible too,'' and ``Nothing is perfect, not even the perfect.''


References

Le, C. T. ``The Smarandache Class of Paradoxes.'' Bull. Transylvania Univ. Brasov 36, 7-8, 1994.

Le, C. T. ``The Smarandache Class of Paradoxes.'' Bull. Pure Appl. Sci. 14E, 109-110, 1995.

Le, C. T. ``The Smarandache Class of Paradoxes.'' J. Indian Acad. Math. 18, 53-55, 1996.

Mitroiescu, I. The Smarandache Class of Paradoxes. Glendale, AZ: Erhus University Press, 1994.

Mitroiescu, I. ``The Smarandache's Class of Paradoxes Applied in Computer Science.'' Abstracts of Papers Presented to the Amer. Math. Soc. 16, 651, 1995.




© 1996-9 Eric W. Weisstein
1999-05-26