info prev up next book cdrom email home

Spectral Power Density


\begin{displaymath}
P_y(\nu)\equiv\lim_{T\to\infty} {2\over T} \left\vert{\int_{-T/2}^{T/2} [y(t)-\bar y]e^{-2\pi i\nu t}\,dt}\right\vert^2,
\end{displaymath}

so
$\displaystyle \int_0^\infty P_y(\nu)\,d\nu$ $\textstyle =$ $\displaystyle \lim_{T\to\infty} {1\over T}\int_{-T/2}^{T/2} [y(t)-\bar y]^2\,dt$  
  $\textstyle =$ $\displaystyle \left\langle{(y-\bar y)^2}\right\rangle{}={\sigma_y}^2.$  

See also Power Spectrum




© 1996-9 Eric W. Weisstein
1999-05-26