A Størmer number is a Positive Integer for which the largest Prime factor of is at least . Every Gregory Number can be expressed uniquely as a sum of s where the s are Størmer numbers. Conway and Guy (1996) give a table of Størmer numbers reproduced below (Sloane's A005529). In a paper on Inverse Tangent relations, Todd (1949) gives a similar compilation.
1 | 2 | 10 | 101 | 19 | 181 | 26 | 677 | 35 | 613 |
2 | 5 | 11 | 61 | 20 | 401 | 27 | 73 | 36 | 1297 |
4 | 17 | 12 | 29 | 22 | 97 | 28 | 157 | 37 | 137 |
5 | 13 | 14 | 197 | 23 | 53 | 29 | 421 | 39 | 761 |
6 | 37 | 15 | 113 | 24 | 577 | 33 | 109 | 40 | 1601 |
9 | 41 | 16 | 257 | 25 | 313 | 34 | 89 | 42 | 353 |
See also Gregory Number, Inverse Tangent
References
Conway, J. H. and Guy, R. K. ``Størmer's Numbers.'' The Book of Numbers. New York: Springer-Verlag,
pp. 245-248, 1996.
Sloane, N. J. A. Sequence
A005529/M1505
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.
Todd, J. ``A Problem on Arc Tangent Relations.'' Amer. Math. Monthly 56, 517-528, 1949.