info prev up next book cdrom email home

Triangular Matrix

An upper triangular Matrix ${\hbox{\sf U}}$ is defined by

\begin{displaymath}
U_{ij} = \cases{
a_{ij} & for $i \leq j$\cr
0 & for $i > j$.\cr}
\end{displaymath} (1)

Written explicitly,
\begin{displaymath}
{\hbox{\sf U}} = \left[{\matrix{
a_{11} & a_{12} & \cdots &...
...ots & \ddots & \vdots\cr
0 & 0 & \cdots & a_{nn}\cr}}\right].
\end{displaymath} (2)

A lower triangular Matrix ${\hbox{\sf L}}$ is defined by
\begin{displaymath}
L_{ij} = \cases{
a_{ij} & for $i \geq j$\cr
0 & for $i < j$.\cr}
\end{displaymath} (3)

Written explicitly,
\begin{displaymath}
{\hbox{\sf L}} = \left[{\matrix{
a_{11} & 0 & \cdots & 0\cr...
... \ddots & 0\cr
a_{n1} & a_{n2} & \cdots & a_{nn}\cr}}\right].
\end{displaymath} (4)

See also Hessenberg Matrix, Hilbert Matrix, Matrix, Vandermonde Matrix




© 1996-9 Eric W. Weisstein
1999-05-26