info prev up next book cdrom email home

Weyrich's Formula

Under appropriate constraints,
${1\over 2} i \int_{-\infty}^\infty H_0^{(1)}(r\sqrt{k^2-r^2}\,)e^{i\tau x} \,d\tau = {e^{ik\sqrt{r^2+k^2}}\over\sqrt{r^2+x^2}},$
where $H_0^{(1)}(z)$ is a Hankel Function of the First Kind.


References

Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1474, 1980.




© 1996-9 Eric W. Weisstein
1999-05-26