The umbilic torus appears in catastrophe theory in the context of classifying singularities. A clipping plan is included to demonstrate that the cross section is a deltoid curve.

This umbilic torus is defined parametrically by

\[ \begin{align} x &= \left[ 7 + \cos \left( \frac{u}{3} - 2v \right) + 2 \cos \left( \frac{u}{3} + v \right) \right] \sin u \\ y &= \left[ 7 + \cos \left( \frac{u}{3} - 2v \right) + 2 \cos \left( \frac{u}{3} + v \right) \right] \cos u \\ z &= \sin \left( \frac{u}{3} - 2v \right) + 2 \sin \left( \frac{u}{3} + v \right) \end{align} \]

with \( -\pi \le u \le \pi \) and \( -\pi \le v \le \pi \).

Complete code for this example:



 

Examples Page


DrHuang.com | list | wiki | about | donate | index | forum | help | chat | translated from Chinese | 中文