The logarithm of the gamma function of z in Math, is special function.
logGamma(x) = log(Gamma(x))
polygamma(n,x) — polygamma function of a real or complex number
\[ psi(n,x) = \psi^{(n)}(x) = d^n/dx^n \; \psi(x) = polygamma(n,x) = d^{n+1}/dx^{n+1} \; loggamma(x) \]
polygamma(n,x) = zeta(n+1,x) if n>0.
polygamma(-1,x) = psi(-1,x) = logGamma(x)
polygamma(0,x) = digamma( x ) = pis(x) = psi(0,x)
Real part on the real axis:
Imaginary part on the real axis:
Real part on the imaginary axis:
Imaginary part on the imaginary axis:
Real part on the complex plane:
Imaginary part on the complex plane:
Absolute value on the complex plane:
Function category: gamma functions