The Riemann zeta function of z in Math, is special function. Defined by
\[ \zeta(z) = \sum_{k=1}^\infty \frac{ 1 }{ k^z } \] \[ \zeta(z,n) = \sum_{k=0}^\infty \frac{ 1 }{ (k+n)^z } \]
hurwitzZeta( x, a ) = zeta(x,a) — Hurwitz zeta function of a real or complex number with real or complex parameter a.
zeta(z,1) = zeta(z)
zeta(n,x) = polygamma(n-1,x) when n>1 and x>0.
Real part on the real axis:
Imaginary part on the real axis is zero.
Real part on the imaginary axis:
Imaginary part on the imaginary axis:
Real part on the complex plane:
Imaginary part on the complex plane:
Absolute value on the complex plane:
Related functions: dirichletEta logGamma
Function category: zeta functions