The Dirichlet eta function of z in Math. Defined by
\[ \eta(z) = \sum_{k=1}^\infty \frac{ (-1)^{k-1} }{ k^z } \]Related to the Riemann zeta function by
\[ \eta(z) = \left( 1 - 2^{1-z} \right) \zeta(z) \]Real part on the real axis:
Imaginary part on the real axis is zero.
Real part on the imaginary axis:
Imaginary part on the imaginary axis:
Real part on the complex plane:
Imaginary part on the complex plane:
Absolute value on the complex plane:
Related functions: zeta
Function category: zeta functions