zeta( z )

The Riemann zeta function of z in Math, is special function. Defined by

ζ(z)=k=11kz
ζ(z,n)=k=01(k+n)z

hurwitzZeta( x, a ) = zeta(x,a) — Hurwitz zeta function of a real or complex number with real or complex parameter a.
zeta(z,1) = zeta(z)
zeta(n,x) = polygamma(n-1,x) when n>1 and x>0.

Real part on the real axis:

-10 -5 5 10 -5.0 -2.5 2.5 5.0

Imaginary part on the real axis is zero.

Real part on the imaginary axis:

-10 -5 5 10 0.5 1.0 1.5

Imaginary part on the imaginary axis:

-10 -5 5 10 -0.50 -0.25 0.25 0.50

Real part on the complex plane:

Imaginary part on the complex plane:

Absolute value on the complex plane:

Reference

Related functions:   dirichletEta   logGamma

Function category: zeta functions