logGamma( z )

The logarithm of the gamma function of z in Math, is special function.

logGamma(x) = log(Gamma(x))
psi(x) = digamma( x ) — digamma function of a real or complex number
psi(x)=ψ(x)=digamma(x)=d/dxloggamma(x)=Γ(x)/Γ(x)

polygamma(n,x) — polygamma function of a real or complex number
psi(n,x)=ψ(n)(x)=dn/dxnψ(x)=polygamma(n,x)=dn+1/dxn+1loggamma(x)


polygamma(n,x) = zeta(n+1,x) if n>0.
polygamma(-1,x) = psi(-1,x) = logGamma(x)
polygamma(0,x) = digamma( x ) = pis(x) = psi(0,x)

Real part on the real axis:

-4 -3 -2 -1 1 2 3 4 5 -2 -1 1 2 3 4 5

Imaginary part on the real axis:

-4 -3 -2 -1 1 2 3 4 5 -15.0 -12.5 -10.0 -7.5 -5.0 -2.5

Real part on the imaginary axis:

-5.0 -2.5 2.5 5.0 -7.5 -5.0 -2.5 2.5

Imaginary part on the imaginary axis:

-5.0 -2.5 2.5 5.0 -2 -1 1 2

Real part on the complex plane:

Imaginary part on the complex plane:

Absolute value on the complex plane:

Reference

Related functions:   gamma   zeta

Function category: gamma functions