info prev up next book cdrom email home

Authalic Latitude

An Auxiliary Latitude which gives a Sphere equal Surface Area relative to an Ellipsoid. The authalic latitude is defined by

\begin{displaymath}
\beta=\sin^{-1}\left({q\over q_p}\right),
\end{displaymath} (1)

where
\begin{displaymath}
q\equiv (1-e^2)\left[{{\sin\phi\over 1-e^2\sin^2\phi}-{1\over 2e}\ln\left({1-e\sin\phi\over 1+e\sin\phi}\right)}\right],
\end{displaymath} (2)

and $q_p$ is $q$ evaluated at the north pole ($\phi=90^\circ$). Let $R_q$ be the Radius of the Sphere having the same Surface Area as the Ellipsoid, then
\begin{displaymath}
R_q=a\sqrt{q_p\over 2}\,.
\end{displaymath} (3)

The series for $\beta$ is
$\displaystyle \beta$ $\textstyle =$ $\displaystyle \phi-({\textstyle{1\over 3}}e^2+{\textstyle{31\over 180}}e^4+{\textstyle{59\over 560}}e^6+\ldots)\sin(2\phi)$  
  $\textstyle \phantom{=}$ $\displaystyle +({\textstyle{17\over 360}}e^4+{\textstyle{61\over 1260}}e^6+\ldots)\sin(4\phi)$  
  $\textstyle \phantom{=}$ $\displaystyle -({\textstyle{383\over 45360}}e^6+\ldots)\sin(6\phi)+\ldots.$ (4)

The inverse Formula is found from


\begin{displaymath}
\Delta\phi={(1-e^2\sin^2\phi)^2\over 2\cos\phi}\left[{{q\ove...
...ver 2e}\ln\left({1-e\sin\phi\over 1+e\sin\phi}\right)}\right],
\end{displaymath} (5)

where
\begin{displaymath}
q=q_p\sin\beta
\end{displaymath} (6)

and $\phi_0=\sin^{-1}(q/2)$. This can be written in series form as
$\displaystyle \phi$ $\textstyle =$ $\displaystyle \beta+({\textstyle{1\over 3}}e^2+{\textstyle{31\over 180}}e^4+{\textstyle{517\over 5040}}e^6+\ldots)\sin(2\beta)$  
  $\textstyle \phantom{=}$ $\displaystyle +({\textstyle{23\over 360}}e^4+{\textstyle{251\over 3780}}e^6+\ldots)\sin(4\beta)$  
  $\textstyle \phantom{=}$ $\displaystyle +({\textstyle{761\over 45360}}e^6+\ldots)\sin(6\beta)+\ldots.$ (7)

See also Latitude


References

Adams, O. S. ``Latitude Developments Connected with Geodesy and Cartography with Tables, Including a Table for Lambert Equal-Area Meridional Projections.'' Spec. Pub. No. 67. U. S. Coast and Geodetic Survey, 1921.

Snyder, J. P. Map Projections--A Working Manual. U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, p. 16, 1987.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25