info prev up next book cdrom email home

Barnes' Lemma

If a Contour in the Complex Plane is curved such that it separates the increasing and decreasing sequences of Poles, then


\begin{displaymath}
{1\over 2\pi i} \int_{-i\infty}^{i\infty} \Gamma(\alpha+s)\G...
...)\Gamma(\beta+\delta)\over\Gamma(\alpha+\beta+\gamma+\delta)},
\end{displaymath}

where $\Gamma(z)$ is the Gamma Function.




© 1996-9 Eric W. Weisstein
1999-05-26