The theorem that, for Integral Positive ,
See also Binomial Coefficient, Binomial Series, Cauchy Binomial Theorem, Chu-Vandermonde Identity, Logarithmic Binomial Formula, Negative Binomial Series, q-Binomial Theorem, Random Walk
References
Abramowitz, M. and Stegun, C. A. (Eds.).
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, p. 10, 1972.
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 307-308, 1985.
Conway, J. H. and Guy, R. K. ``Choice Numbers Are Binomial Coefficients.'' In The Book of Numbers. New York:
Springer-Verlag, pp. 72-74, 1996.
Coolidge, J. L. ``The Story of the Binomial Theorem.'' Amer. Math. Monthly 56, 147-157, 1949.
Courant, R. and Robbins, H. ``The Binomial Theorem.'' §1.6 in
What is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed.
Oxford, England: Oxford University Press, pp. 16-18, 1996.