info prev up next book cdrom email home

Negative Binomial Series

The Series which arises in the Binomial Theorem for Negative integral $n$,

$\displaystyle (x+a)^{-n}$ $\textstyle =$ $\displaystyle \sum_{k=0}^\infty {-n\choose k} x^k a^{-n-k}$  
  $\textstyle =$ $\displaystyle \sum_{k=0}^\infty (-1)^k {n+k-1\choose k} x^k a^{-n-k}.$  

For $a=1$, the negative binomial series simplifies to

\begin{displaymath}
(x+1)^{-n}=1-nx+{\textstyle{1\over 2}}n(n+1)x^2-{\textstyle{1\over 6}} n(n+1)(n+2)+\ldots.
\end{displaymath}

See also Binomial Series, Binomial Theorem




© 1996-9 Eric W. Weisstein
1999-05-25