info prev up next book cdrom email home

Bonne Projection

\begin{figure}\begin{center}\BoxedEPSF{maps/bonn.epsf scaled 600}\end{center}\end{figure}

A Map Projection which resembles the shape of a heart. Let $\phi_1$ be the standard parallel and $\lambda_0$ the central meridian. Then

$\displaystyle x$ $\textstyle =$ $\displaystyle \rho\sin E$ (1)
$\displaystyle y$ $\textstyle =$ $\displaystyle R\cot\phi_1-\rho\cos R,$ (2)

where
$\displaystyle \rho$ $\textstyle =$ $\displaystyle \cot\phi_1+\phi_1-\phi$ (3)
$\displaystyle E$ $\textstyle =$ $\displaystyle {(\lambda-\lambda_0)\cos\phi\over\rho}.$ (4)

The inverse Formulas are
$\displaystyle \phi$ $\textstyle =$ $\displaystyle \cot\phi_1+\phi_1-\rho$ (5)
$\displaystyle \lambda$ $\textstyle =$ $\displaystyle \lambda_0+{\rho\over\cos\phi} \tan^{-1}\left({x\over\cot\phi_1-y}\right),$ (6)

where
\begin{displaymath}
\rho=\pm\sqrt{x^2+(\cot\phi_1-y)^2}.
\end{displaymath} (7)


References

Snyder, J. P. Map Projections--A Working Manual. U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, pp. 138-140, 1987.




© 1996-9 Eric W. Weisstein
1999-05-26