A mathematical symbol used to integrate products of three Spherical Harmonics.
Clebsch-Gordan coefficients commonly arise in applications involving the addition of
angular momentum in quantum mechanics. If products of more than
three Spherical Harmonics are desired, then a generalization known as Wigner 6j-Symbol or Wigner 9j-Symbol is used. The Clebsch-Gordan
coefficients are written
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
See also Racah V-Coefficient, Racah W-Coefficient, Wigner 3j-Symbol, Wigner 6j-Symbol, Wigner 9j-Symbol
References
Abramowitz, M. and Stegun, C. A. (Eds.). ``Vector-Addition Coefficients.'' §27.9 in
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 1006-1010, 1972.
Cohen-Tannoudji, C.; Diu, B.; and Laloë, F. ``Clebsch-Gordan Coefficients.'' Complement in
Quantum Mechanics, Vol. 2. New York: Wiley, pp. 1035-1047, 1977.
Condon, E. U. and Shortley, G. §3.6-3.14 in The Theory of Atomic Spectra. Cambridge, England: Cambridge University Press,
pp. 56-78, 1951.
Fano, U. and Fano, L. Basic Physics of Atoms and Molecules. New York: Wiley, p. 240, 1959.
Messiah, A. ``Clebsch-Gordan (C.-G.) Coefficients and `3j' Symbols.'' Appendix C.I in Quantum Mechanics, Vol. 2.
Amsterdam, Netherlands: North-Holland, pp. 1054-1060, 1962.
Shore, B. W. and Menzel, D. H. ``Coupling and Clebsch-Gordan Coefficients.'' §6.2 in Principles of Atomic Spectra.
New York: Wiley, pp. 268-276, 1968.
Sobel'man, I. I. ``Angular Momenta.'' Ch. 4 in Atomic Spectra and Radiative Transitions, 2nd ed.
Berlin: Springer-Verlag, 1992.
© 1996-9 Eric W. Weisstein