info prev up next book cdrom email home

Wigner 3j-Symbol

The Wigner $3j$ symbols are written

\begin{displaymath}
\pmatrix{j_1 & j_2 & j\cr m_1 & m_2 & m\cr}
\end{displaymath} (1)

and are sometimes expressed using the related Clebsch-Gordan Coefficients
\begin{displaymath}
C^j_{m_1m_2}=(j_1j_2m_1m_2\vert j_1j_2jm)
\end{displaymath} (2)

(Condon and Shortley 1951, pp. 74-75; Wigner 1959, p. 206), or Racah V-Coefficient
\begin{displaymath}
V(j_1j_2j;m_1m_2m).
\end{displaymath} (3)

Connections among the three are


\begin{displaymath}
(j_1j_2m_1m_2\vert j_1j_2m) = (-1)^{-j_1+j_2-m} \sqrt{2j+1}\,\pmatrix{j_1 & j_2 & j\cr m_1 & m_2 & -m\cr}
\end{displaymath} (4)


\begin{displaymath}
(j_1j_2m_1m_2\vert j_1j_2jm) = (-1)^{j+m}\sqrt{2j+1}V(j_1j_2j; m_1m_2\, -m)
\end{displaymath} (5)


\begin{displaymath}
V(j_1j_2j;m_1m_2m)=(-1)^{-j_1+j_2+j}\pmatrix{j_1 & j_2 & j_1\cr m_2 & m_1 & m_2}.
\end{displaymath} (6)

The Wigner $3j$-symbols have the symmetries


$\displaystyle \left(\begin{array}{ccc}j_1 & j_2 & j\\  m_1 & m_2 & m\end{array}\right)$ $\textstyle =$ $\displaystyle \left(\begin{array}{ccc}j_2 & j & j_1\\  m_2 & m & m_1\end{array}\right)$  
  $\textstyle =$ $\displaystyle \left(\begin{array}{ccc}j & j_1 & j_2\\  m & m_1 & m_2\end{array}...
...+j_2+j}\left(\begin{array}{ccc}j_2 & j_1 & j\\  m_2 & m_1 & m\end{array}\right)$  
  $\textstyle =$ $\displaystyle (-1)^{j_1+j_2+j}\left(\begin{array}{ccc}j_1 & j & j_2\\  m_1 & m & m_2\end{array}\right)$  
  $\textstyle =$ $\displaystyle (-1)^{j_1+j_2+j}\left(\begin{array}{ccc}j & j_2 & j_1\\  m & m_2 & m_1\end{array}\right)$  
  $\textstyle =$ $\displaystyle (-1)^{j_1+j_2+j}\left(\begin{array}{ccc}j_1 & j_2 & j\\  -m_1 & -m_2 & -m\end{array}\right).$ (7)

The symbols obey the orthogonality relations


\begin{displaymath}
\sum_{j,m} (2j+1)\pmatrix{j_1 & j_2 & j\cr m_1 & m_2 & m\cr}...
...j_2 & j\cr m_1' & m_2' & m} = \delta_{m_1m_1'}\delta_{m_2m_2'}
\end{displaymath} (8)


\begin{displaymath}
\sum_{m_1,m_2} \pmatrix{j_1 & j_2 & j\cr m_1 & m_2 & m\cr}\p...
...{j_1 & j_2 & j'\cr m_1 & m_2 & m'} = \delta_{jj'}\delta_{mm'},
\end{displaymath} (9)

where $\delta_{ij}$ is the Kronecker Delta.


General formulas are very complicated, but some specific cases are

$\pmatrix{j_1 & j_2 & j_1+j_2\cr m_1 & m_2 & -m_1-m_2\cr} = (-1)^{j_1-j_2+m_1+m_2}$
$ \times\left[{{(2j_1)!(2j_2)!\over (2j_1+2j_2+1)!(j_1+m_1)!}{(j_1+j_2+m_1+m_2)!(j_1+j_2-m_1-m_2)!\over (j_1-m_1)!(j_2+m_2)!(j_2-m_2)!}}\right]^{1/2}\quad$ (10)
$\pmatrix{j_1 & j_2 & j\cr j_1 & -j_1- & m\cr}=(-1)^{-j_1+j_2+m}$
$\times\left[{{(2j_1)!(-j_1+j_2+j)!\over (j_1+j_2+j+1)!(j_1-j_2+j)!}{(j_1+j_2+m)!(j-m)!\over (j_1+j_2-j)!(-j_1+j_2-m)!(j+m)!}}\right]^{1/2}\quad$ (11)

\begin{displaymath}
\left(\begin{array}{ccc}
j_1 & j_2 & j\\
0 & 0 & 0
\end{ar...
...f\ } J=2g\\
0\\
\quad {\rm if\ } J=2g+1,
\end{array}\right.
\end{displaymath} (12)

for $J\equiv j_1+j_2+j$.


For Spherical Harmonics $Y_{lm}(\theta,\phi)$,

$Y_{l_1m_1}(\theta,\phi)Y_{l_2m_2}(\theta,\phi)$
$ =\sum_{l,m}\sqrt{(2l_1+1)(2l_2+1)(2l+1)\over 4\pi}\pmatrix{l_1 & l_2 & l\cr m_1 & m_2 & m\cr} Y_{lm}^*(\theta,\psi)\pmatrix{l_1 & l_2 & l\cr 0 & 0 & 0\cr}.\quad$ (13)
For values of $l_3$ obeying the Triangle Condition $\Delta(l_1l_2l_3)$,

$\int Y_{l_1m_1}(\theta,\phi)Y_{l_2m_2}(\theta,\phi)Y_{l_3m_3}(\theta,\phi)\sin\theta\,d\theta\,d\phi$
$ = \sqrt{(2l_1+1)(2l_2+1)(2l_3+1)\over 4\pi} \pmatrix{l_1 & l_2 & l_3\cr 0 & 0 & 0\cr}\pmatrix{l_1 & l_2 & l_3\cr m_1 & m_2 & m_3\cr}\quad$ (14)
and


\begin{displaymath}
{1\over 2}\int P_{l_1}(\cos\theta)P_{l_2}(\cos\theta)P_{l_3}...
...\theta\,d\theta = \pmatrix{l_1 & l_2 & l_3\cr 0 & 0 & 0\cr}^2.
\end{displaymath} (15)

See also Clebsch-Gordan Coefficient, Racah V-Coefficient, Racah W-Coefficient, Wigner 6j-Symbol, Wigner 9j-Symbol


References

Abramowitz, M. and Stegun, C. A. (Eds.). ``Vector-Addition Coefficients.'' §27.9 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 1006-1010, 1972.

Condon, E. U. and Shortley, G. The Theory of Atomic Spectra. Cambridge, England: Cambridge University Press, 1951.

de Shalit, A. and Talmi, I. Nuclear Shell Theory. New York: Academic Press, 1963.

Gordy, W. and Cook, R. L. Microwave Molecular Spectra, 3rd ed. New York: Wiley, pp. 804-811, 1984.

Messiah, A. ``Clebsch-Gordan (C.-G.) Coefficients and `$3j$' Symbols.'' Appendix C.I in Quantum Mechanics, Vol. 2. Amsterdam, Netherlands: North-Holland, pp. 1054-1060, 1962.

Rotenberg, M.; Bivens, R.; Metropolis, N.; and Wooten, J. K. The $3j$ and $6j$ Symbols. Cambridge, MA: MIT Press, 1959.

Shore, B. W. and Menzel, D. H. Principles of Atomic Spectra. New York: Wiley, pp. 275-276, 1968.

Sobel'man, I. I. ``Angular Momenta.'' Ch. 4 in Atomic Spectra and Radiative Transitions, 2nd ed. Berlin: Springer-Verlag, 1992.

Wigner, E. P. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, expanded and improved ed. New York: Academic Press, 1959.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26