info prev up next book cdrom email home

Clifford Algebra

Let $V$ be an $n$-D linear Space over a Field $K$, and let $Q$ be a Quadratic Form on $V$. A Clifford algebra is then defined over the $T(V)/I(Q)$, where $T(V)$ is the tensor algebra over $V$ and $I$ is a particular Ideal of $T(V)$.


References

Iyanaga, S. and Kawada, Y. (Eds.). ``Clifford Algebras.'' §64 in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 220-222, 1980.

Lounesto, P. ``Counterexamples to Theorems Published and Proved in Recent Literature on Clifford Algebras, Spinors, Spin Groups, and the Exterior Algebra.'' http://www.hit.fi/~lounesto/counterexamples.htm.




© 1996-9 Eric W. Weisstein
1999-05-26