A quadratic form involving Real variables , , ..., associated with the Matrix
is given by

(1) |

(2) |

(3) |

(4) |

It is always possible to express an arbitrary quadratic form

(5) |

(6) |

(7) |

(8) |

**References**

Buell, D. A. *Binary Quadratic Forms: Classical Theory and Modern Computations.* New York: Springer-Verlag, 1989.

Conway, J. H. and Fung, F. Y. *The Sensual (Quadratic) Form.* Washington, DC: Math. Assoc. Amer., 1998.

Gradshteyn, I. S. and Ryzhik, I. M. *Tables of Integrals, Series, and Products, 5th ed.* San Diego, CA:
Academic Press, pp. 1104-106, 1979.

Lam, T. Y. *The Algebraic Theory of Quadratic Forms.* Reading, MA: W. A. Benjamin, 1973.

© 1996-9

1999-05-25