A problem posed by L. Collatz in 1937, also called the 3x+1 Mapping, Hasse's Algorithm, Kakutani's
Problem, Syracuse Algorithm, Syracuse Problem, Thwaites Conjecture, and Ulam's Problem
(Lagarias 1985). Thwaites (1996) has offered a 1000 reward for resolving the Conjecture. Let be an
Integer. Then the Collatz problem asks if iterating
(1) |
The Collatz problem was modified by Terras (1976, 1979), who asked if iterating
(2) |
(3) |
(4) |
(5) | |||
(6) | |||
(7) |
Conway proved that the original Collatz problem has no nontrivial cycles of length . Lagarias (1985) showed that there are no nontrivial cycles with length . Conway (1972) also proved that Collatz-type problems can be formally Undecidable.
A generalization of the Collatz Problem lets be a Positive Integer and , ...,
be Nonzero Integers. Also let satisfy
(8) |
(9) |
(10) |
(11) |
# Cycles | Max. Cycle Length | |
0 | 5 | 27 |
1 | 10 | 34 |
2 | 13 | 118 |
3 | 17 | 118 |
4 | 19 | 118 |
5 | 21 | 165 |
6 | 23 | 433 |
Matthews and Watts (1984) proposed the following conjectures.
(12) |
(13) |
See also Hailstone Number
References
Applegate, D. and Lagarias, J. C. ``Density Bounds for the Problem 1. Tree-Search Method.''
Math. Comput. 64, 411-426, 1995.
Applegate, D. and Lagarias, J. C. ``Density Bounds for the Problem 2. Krasikov Inequalities.''
Math. Comput. 64, 427-438, 1995.
Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972.
Burckel, S. ``Functional Equations Associated with Congruential Functions.'' Theor. Comp. Sci. 123, 397-406, 1994.
Conway, J. H. ``Unpredictable Iterations.'' Proc. 1972 Number Th. Conf., University of Colorado, Boulder, Colorado, pp. 49-52, 1972.
Crandall, R. ``On the `' Problem.'' Math. Comput. 32, 1281-1292, 1978.
Everett, C. ``Iteration of the Number Theoretic Function ,
.'' Adv. Math. 25, 42-45, 1977.
Guy, R. K. ``Collatz's Sequence.'' §E16 in Unsolved Problems in Number Theory, 2nd ed.
New York: Springer-Verlag, pp. 215-218, 1994.
Lagarias, J. C. ``The Problem and Its Generalizations.'' Amer. Math. Monthly 92, 3-23, 1985.
http://www.cecm.sfu.ca/organics/papers/lagarias/.
Leavens, G. T. and Vermeulen, M. `` Search Programs.'' Comput. Math. Appl. 24, 79-99, 1992.
Matthews, K. R. ``The Generalized Mapping.''
http://www.maths.uq.oz.au/~krm/survey.ps. Rev. Mar. 30, 1999.
Matthews, K. R. ``A Generalized Conjecture.'' [$100 Reward for a Proof.]
ftp://www.maths.uq.edu.au/pub/krm/gnubc/challenge.
Matthews, K. R. and Watts, A. M. ``A Generalization of Hasses's Generalization of the Syracuse Algorithm.''
Acta Arith. 43, 167-175, 1984.
Sloane, N. J. A. Sequence
A006667/M0019
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.
Terras, R. ``A Stopping Time Problem on the Positive Integers.'' Acta Arith. 30, 241-252, 1976.
Terras, R. ``On the Existence of a Density.'' Acta Arith. 35, 101-102, 1979.
Thwaites, B. ``Two Conjectures, or How to win 1100.'' Math.Gaz. 80, 35-36, 1996.
Vardi, I. ``The Problem.'' Ch. 7 in Computational Recreations in Mathematica.
Redwood City, CA: Addison-Wesley, pp. 129-137, 1991.
© 1996-9 Eric W. Weisstein