info prev up next book cdrom email home

Constant Function

\begin{figure}\begin{center}\BoxedEPSF{ConstantFunction.epsf}\end{center}\end{figure}

A Function $f(x)=c$ which does not change as its parameters vary. The Graph of a 1-D constant Function is a straight Line. The Derivative of a constant Function $c$ is

\begin{displaymath}
{d\over dx} c=0,
\end{displaymath} (1)

and the Integral is
\begin{displaymath}
\int c\,dx = cx.
\end{displaymath} (2)

The Fourier Transform of the constant function $f(x)=1$ is given by
\begin{displaymath}
{\mathcal F}[1] =\int_{-\infty}^\infty e^{-2\pi ikx}\,dx = \delta(k),
\end{displaymath} (3)

where $\delta(k)$ is the Delta Function.

See also Fourier Transform--1


References

Spanier, J. and Oldham, K. B. ``The Constant Function $c$.'' Ch. 1 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 11-14, 1987.




© 1996-9 Eric W. Weisstein
1999-05-26