info prev up next book cdrom email home

Cyclotomic Field

The smallest field containing $m\in \Bbb{Z}\geq 1$ with $\zeta$ a Prime Root of Unity is denoted $\Bbb{R}_m(\zeta)$.

\begin{displaymath}
x^p+y^p=\prod_{k=1}^p (x+\zeta^k y).
\end{displaymath}

Specific cases are
$\displaystyle \Bbb{R}_3$ $\textstyle =$ $\displaystyle \Bbb{Q}(\sqrt{-3}\,)$  
$\displaystyle \Bbb{R}_4$ $\textstyle =$ $\displaystyle \Bbb{Q}(\sqrt{-1}\,)$  
$\displaystyle \Bbb{R}_6$ $\textstyle =$ $\displaystyle \Bbb{Q}(\sqrt{-3}\,),$  

where $\Bbb{Q}$ denotes a Quadratic Field.




© 1996-9 Eric W. Weisstein
1999-05-25