info prev up next book cdrom email home

Cyclotomic Integer

A number of the form

\begin{displaymath}
a_0+a_1\zeta+\ldots+a_{p-1}\zeta^{p-1},
\end{displaymath}

where

\begin{displaymath}
\zeta\equiv e^{2\pi i/p}
\end{displaymath}

is a de Moivre Number and $p$ is a Prime number. Unique factorizations of cyclotomic Integers fail for $p>23$.




© 1996-9 Eric W. Weisstein
1999-05-25