A Permutation of ordered objects in which none of the objects appears in its natural place. The function
giving this quantity is the Subfactorial , defined by
(1) |
(2) |
(3) |
(4) |
See also Married Couples Problem, Permutation, Root, Subfactorial
References
Aitken, A. C. Determinants and Matrices. Westport, CT: Greenwood Pub., p. 135, 1983.
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed.
New York: Dover, pp. 46-47, 1987.
Coolidge, J. L. An Introduction to Mathematical Probability. Oxford, England: Oxford University Press, p. 24, 1925.
Courant, R. and Robbins, H. What is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed.
Oxford, England: Oxford University Press, pp. 115-116, 1996.
de Montmort, P. R. Essai d'analyse sur les jeux de hasard. Paris, p. 132, 1713.
Dickau, R. M. ``Derangements.''
http://forum.swarthmore.edu/advanced/robertd/derangements.html.
Durell, C. V. and Robson, A. Advanced Algebra. London, p. 459, 1937.
Petkovsek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A. K. Peters, 1996.
Roberts, F. S. Applied Combinatorics. Englewood Cliffs, NJ: Prentice-Hall, 1984.
Ruskey, F. ``Information on Derangements.''
http://sue.csc.uvic.ca/~cos/inf/perm/Derangements.html.
Sloane, N. J. A. Sequence
A000166/M1937
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.
Stanley, R. P. Enumerative Combinatorics, Vol. 1. New York: Cambridge University Press, p. 67, 1986.
Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 123, 1991.
© 1996-9 Eric W. Weisstein